Exercise 3

Use residues to derive the integration formulas in Exercises 1 through 6.

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}
$$

Solution

The integrand is an even function of x, so the interval of integration can be extended to $(-\infty, \infty)$ as long as the integral is divided by 2 .

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\int_{-\infty}^{\infty} \frac{d x}{2\left(x^{4}+1\right)}
$$

In order to evaluate the integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{1}{2\left(z^{4}+1\right)},
$$

and the contour in Fig. 99. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
2\left(z^{4}+1\right)=0 \\
z^{4}+1=0 \\
z=\sqrt[4]{1} \exp \left[i\left(\frac{\pi+2 k \pi}{4}\right)\right], \quad k=0,1,2,3 \quad \rightarrow \quad\left\{\begin{array}{l}
z_{1}=e^{i \pi / 4}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} \\
z_{2}=e^{i 3 \pi / 4}=-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} \\
z_{3}=e^{i 5 \pi / 4}=-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}} \\
z_{4}=e^{i 7 \pi / 4}=\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}
\end{array}\right.
\end{gathered}
$$

The singular points of interest to us are the ones that lie within the closed contour, $z=z_{1}$ and $z=z_{2}$.

Figure 1: This is Fig. 99 with the singularities at $z=z_{1}$ and $z=z_{2}$ marked.

According to Cauchy's residue theorem, the integral of $1 /\left[2\left(z^{4}+1\right)\right]$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{d z}{2\left(z^{4}+1\right)}=2 \pi i\left[\operatorname{Res}_{z=z_{1}} \frac{1}{2\left(z^{4}+1\right)}+\operatorname{Res}_{z=z_{2}} \frac{1}{2\left(z^{4}+1\right)}\right]
$$

This closed loop integral is the sum of two integrals, one over each arc in the loop.

$$
\int_{L} \frac{d z}{2\left(z^{4}+1\right)}+\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)}=2 \pi i\left[\operatorname{Res}_{z=z_{1}} \frac{1}{2\left(z^{4}+1\right)}+\operatorname{Res}_{z=z_{2}} \frac{1}{2\left(z^{4}+1\right)}\right]
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{cll}
L: & z=r, & r=-R \quad \rightarrow \quad r=R \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

As a result,

$$
\int_{-R}^{R} \frac{d r}{2\left(r^{4}+1\right)}+\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)}=2 \pi i\left[\operatorname{Res}_{z=z_{1}} \frac{1}{2\left(z^{4}+1\right)}+\underset{z=z_{2}}{\operatorname{Res}} \frac{1}{2\left(z^{4}+1\right)}\right] .
$$

Take the limit now as $R \rightarrow \infty$. The integral over C_{R} consequently tends to zero. Proof for this statement will be given at the end.

$$
\int_{-\infty}^{\infty} \frac{d r}{2\left(r^{4}+1\right)}=2 \pi i\left[\operatorname{Res}_{z=z_{1}} \frac{1}{2\left(z^{4}+1\right)}+\operatorname{Res}_{z=z_{2}} \frac{1}{2\left(z^{4}+1\right)}\right]
$$

The denominator can be written as $2\left(z^{4}+1\right)=2\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)$. From this we see that the multiplicities of the $z-z_{1}$ and $z-z_{2}$ factors are both 1 . The residues at $z=z_{1}$ and $z=z_{2}$ can then be calculated by

$$
\begin{aligned}
& \operatorname{Res}_{z=z_{1}} \frac{1}{2\left(z^{4}+1\right)}=\phi_{1}\left(z_{1}\right) \\
& \operatorname{Res}_{z=z_{2}} \frac{1}{2\left(z^{4}+1\right)}=\phi_{2}\left(z_{2}\right),
\end{aligned}
$$

where $\phi_{1}(z)$ and $\phi_{2}(z)$ are equal to $f(z)$ without the $z-z_{1}$ and $z-z_{2}$ factors, respectively.

$$
\begin{array}{ll}
\phi_{1}(z)=\frac{1}{2\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \quad \Rightarrow \quad \phi_{1}\left(z_{1}\right)=\frac{1}{2(\sqrt{2})[\sqrt{2}(1+i)](i \sqrt{2})}=-\frac{1}{8 \sqrt{2}}(1+i) \\
\phi_{2}(z)=\frac{1}{2\left(z-z_{1}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \quad \Rightarrow \quad \phi_{2}\left(z_{2}\right)=\frac{1}{2(-\sqrt{2})(i \sqrt{2})[\sqrt{2}(-1+i)]}=\frac{1}{8 \sqrt{2}}(1-i)
\end{array}
$$

So then

$$
\begin{aligned}
& \underset{z=z_{1}}{\operatorname{Res}} \frac{1}{2\left(z^{4}+1\right)}=-\frac{1}{8 \sqrt{2}}(1+i) \\
& \underset{z=z_{2}}{\operatorname{Res}} \frac{1}{2\left(z^{4}+1\right)}=\frac{1}{8 \sqrt{2}}(1-i)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d r}{2\left(r^{4}+1\right)} & =2 \pi i\left[-\frac{1}{8 \sqrt{2}}(1+i)+\frac{1}{8 \sqrt{2}}(1-i)\right] \\
& =2 \pi i\left(\frac{-i}{4 \sqrt{2}}\right) \\
& =\frac{\pi}{2 \sqrt{2}} .
\end{aligned}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the semicircular arc in Fig. 99 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)} & =\int_{0}^{\pi} \frac{R i e^{i \theta} d \theta}{2\left[\left(R e^{i \theta}\right)^{4}+1\right]} \\
& =\int_{0}^{\pi} \frac{R i e^{i \theta}}{R^{4} e^{i 4 \theta}+1} \frac{d \theta}{2}
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
&\left|\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)}\right|=\left|\int_{0}^{\pi} \frac{R i e^{i \theta}}{R^{4} e^{i 4 \theta}+1} \frac{d \theta}{2}\right| \\
& \leq \int_{0}^{\pi}\left|\frac{R i e^{i \theta}}{R^{4} e^{i 4 \theta}+1}\right| \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{\left|R i e^{i \theta}\right|}{\left|R^{4} e^{i 4 \theta}+1\right|} \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{R}{\left|R^{4} e^{i 4 \theta}+1\right|} \frac{d \theta}{2} \\
& \leq \int_{0}^{\pi} \frac{R}{\left|R^{4} e^{i 4 \theta}\right|-|1|} \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{R}{R^{4}-1} \frac{d \theta}{2} \\
&=\frac{\pi}{2} \frac{R}{R^{4}-1}
\end{aligned}
$$

Now take the limit of both sides as $R \rightarrow \infty$.

$$
\begin{aligned}
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)}\right| \leq \lim _{R \rightarrow \infty} & \frac{\pi}{2} \frac{R}{R^{4}-1} \\
& =\lim _{R \rightarrow \infty} \frac{\pi}{2 R^{3}} \frac{1}{1-\frac{1}{R^{4}}}
\end{aligned}
$$

The limit on the right side is zero.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)}\right| \leq 0
$$

The magnitude of a number cannot be negative.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)}\right|=0
$$

The only number that has a magnitude of zero is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{d z}{2\left(z^{4}+1\right)} d z=0
$$

